|
Электронный
мозг будет думать за нас точно так же, как электрический стул за нас умирает. |
|
Системы счисления ... Мультипликативные Примеры различных Восьмеричная Шестнадцатеричная
|
Система счисления - очень сложное понятие. Оно включает в себя все законы, по которым числа записываются и читаются, а так же те, по которым производятся операции над ними. Самое главное, что нужно знать о системе счисления - ее тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет свое значение, и для прочтения числа нужно сложить все значения использованных цифр: XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10-1+10 = 219; Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе: (иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5) Здесь дважды использован иероглиф "2", и в каждом случае он принимал разные значения "2000" и "20". 2 х 1000
+ 4 х 100 + 2 х 10 + 5 = 2425
Для аддитивной системы нужно знать все цифры-символы с их значениями (их бывает до 4 - 5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5-1) = 4; VI = (5+1) = 6). Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется "десятичная". В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления - десятичная. Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. "Но на одной то руке всего пять пальцев" - скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. "А с ногами - двадцать пальцев" - скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам. Очень интересно понятие "дюжина". Всем известно, что это 12, но откуда появилось такое число - мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги. А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему. В разных цивилизациях считали по-разному, но и сейчас можно даже в языке,
в названиях и изображениях цифр найти остатки совсем других систем счисления,
когда-то использовавшихся этим народом.
Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как "четырежды двадцать". Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X - это две таких же руки. В самой простой системе счисления для записи чисел используется
только одна цифра. Ее можно изобразить в виде палочки I
, кружочка
O , или любой другой фигуры. Числа будут записываться
примерно так:
Такая система счисления использовалась, и до сих пор используется в основном народами, не имеющими письменности. Но иногда такой системой счисления пользуются и современные люди, например, отмечая зарубками количество прошедших дней, или карандашом отмечая черточками в тетради количество проданных товаров.
|
|||||||||||||