Электронный мозг
будет думать за нас
точно так же, как
электрический стул
за нас умирает.

 

Системы счисления ...

Аддитивные системы счисления

Мультипликативные
системы счисления

Примеры различных
систем счисления

Двоичная
система счисления

Троичная
система счисления

Восьмеричная
система счисления

Шестнадцатеричная
система счисления

Задачи

 

 

 


Системы счисления

Система счисления - очень сложное понятие. Оно включает в себя все законы, по которым числа записываются и читаются, а так же те, по которым производятся операции над ними.

Самое главное, что нужно знать о системе счисления - ее тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет свое значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10-1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф "2", и в каждом случае он принимал разные значения "2000" и "20".

2 х 1000 + 4 х 100 + 2 х 10 + 5 = 2425

Для аддитивной системы нужно знать все цифры-символы с их значениями (их бывает до 4 - 5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5-1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется "десятичная". В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления - десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. "Но на одной то руке всего пять пальцев" - скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. "А с ногами - двадцать пальцев" - скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие "дюжина". Всем известно, что это 12, но откуда появилось такое число - мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по-разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда-то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как "четырежды двадцать".

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X - это две таких же руки.

В самой простой системе счисления для записи чисел используется только одна цифра. Ее можно изобразить в виде палочки I , кружочка O , или любой другой фигуры. Числа будут записываться примерно так:
1 I
2 II
3 III
4 IIII
5 IIIII и т.д.

Такая система счисления использовалась, и до сих пор используется в основном народами, не имеющими письменности.

Но иногда такой системой счисления пользуются и современные люди, например, отмечая зарубками количество прошедших дней, или карандашом отмечая черточками в тетради количество проданных товаров.

 


   
Вверх

 

Hosted by uCoz